Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ju-Zhen Yuan and Ming-Wu Ding*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
mwding@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.143$
Data-to-parameter ratio $=17.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Benzylidene-1-phenyl-2-propylamino-1H-imidazol-5(4H)-one

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$, the five-membered imidazolone ring is essentially planar. Intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form an infinite chain. The $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ bond lengths indicate electron delocalization.

Comment

Imidazolones are important heterocycles having fungicidal, anti-inflammatory and angiotensin II antagonist activities (Lacroix et al., 2000). Some 2-alkylaminoimidazolones exhibit good antibacterial activity (Trivedi et al., 2002). The title compound, (I), may be used as a new precursor for obtaining bioactive molecules.

(I)

The molecular structure of (I) is shown in Fig. 1. The fivemembered imidazolone ring is planar. Benzene ring C1-C6 is only slightly twisted with respect to this imidazolone ring, making a dihedral angle of $4.46(9)^{\circ}$. The C7-C8 bond length of 1.347 (2) \AA is close to that of a typical $\mathrm{C}=\mathrm{C}$ bond $(1.35 \AA)$, whereas the $\mathrm{N} 1-\mathrm{C} 10$ bond length of 1.3047 (19) \AA, is slightly longer than that of a typical $\mathrm{C}=\mathrm{N}$ bond (1.28 \AA). The $\mathrm{N} 3-$ C 10 , $\mathrm{N} 2-\mathrm{C} 10$, $\mathrm{N} 2-\mathrm{C} 11$ and $\mathrm{N} 2-\mathrm{C} 9$ bond lengths [1.3292 (19), 1.4004 (18), 1.426 (2) and 1.3860 (19) Å, respectively] indicate some degree of delocalization around the ring system (Yang et al., 1999). The C6-C7-C8-N1 torsion angle of $0.6(3)^{\circ}$ indicates a Z configuration of the molecule about the $\mathrm{C} 7=\mathrm{C} 8$ bond.
Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into chains, as can be seen from the packing diagram (Fig. 2).

Experimental

To a solution of vinyliminophosphorane (3 mmol) in dry dichloromethane (10 ml) was added phenyl isocyanate (3 mmol) under nitrogen at room temperature. After 8 h , the solvent was removed under reduced pressure and a mixture of diethyl ether/petroleum ether ($1: 2 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$) was added to precipitate triphenylphosphine oxide. After the mixture was filtered, the filtrate was condensed and
dichloromethane (10 ml) was added to make a solution of carbodiimide, which was added to n-propylamine (3 mmol). After 2 h , the solvent was removed under reduced pressure and the residual was recrystallized from dichloromethane/ethanol to give (I) in 67% yield (m.p. 456 K$).{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.16-7.10(m, 10 \mathrm{H}, \mathrm{Ar}-$ H), $6.70(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.58(t, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{NH}), 3.60-3.38(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 1.85-1.45\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.94\left(t, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; MS (EI $70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%): 305\left(M^{+}, 95 \%\right), 276$ (64%), 263 (96%), 119 (100%). Elemental analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$: $\mathrm{C} 74.73, \mathrm{H} 6.27, \mathrm{~N}$ 13.76\%; found: 74.62, H 6.37, N 13.61\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \\
& M_{r}=305.37 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.6442(11) \AA \\
& b=11.3675(10) \AA \\
& c=12.8149(12) \AA \\
& \beta=99.058(2) \AA \\
& V=1675.1(3) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.211 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3773 reflections
$\theta=2.4-23.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, yellow
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
14038 measured reflections
3784 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.143$
$S=1.06$
3784 reflections
212 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0641 P)^{2}\right. \\
\quad+0.168 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-_{0.16 \mathrm{e}^{-3}}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.871(8)$	$2.094(13)$	$2.8452(17)$	$144.0(16)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
H atoms attached to carbon were placed at calculated positions and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}$ values set equal to $1.2 U_{\mathrm{eq}}(\mathrm{CH})$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{CH}_{3}\right)$ of the parent atom. The H atom attached to nitrogen was refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1

View of the molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The hydrogen-bonding interactions in (I) forming a chain [symmetry code: (i) $\left.x, \frac{1}{2}-y, z-\frac{1}{2}\right]$. H atoms not involved in hydrogen bonding have been omitted.

SHELXTL (Bruker 2001) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

References

Bruker (2001). SMART (Version 5.0), SAINT (Version 5.0) and SHELXTL$N T$ (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Lacroix, G., Peignier, R., Pepin, R., Bascou, J. P., Perez, J. \& Schmitz, C. (2000). US Patent No. 6002016; Chem. Abstr. (2000). 132, 35698 e.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Trivedi, S. D., Kubawat, H. T. \& Parekh, H. H. (2002). J. Indian Chem. Soc. 79, 282-283.
Yang, G. F., Liu, H. Y. \& Yang, H. Z. (1999). Sci. China Ser. B, 42, 656-662.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

